
41 8 

Some properties of boundary layer flow during the 
transition from laminar to turbulent motion 
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SUMMARY 
Transition in the boundary layer on a flat plate is examined 

from the point of view of intermittent production of turbulent 
spots. On the hypothesis of localized laminar breakdown, for 
which there is some experimental evidence, Emmons’ probability 
calculations can be extended to explain the observed statistical 
similarity of transition regions. Application of these ideas allows 
detailed calculations of the boundary layer parameters including 
mean velocity profiles and skin friction during transition. The 
mean velocity profiles belong to a universal one-parameter family 
with the intermittency factor as the parameter. From an examina- 
tion of experimental data the probable existence of a relation 
between the transition Reynolds number and the rate of production 
of the turbulent spots is deduced. A simple new technique for 
the measurement of the intermittency factor by a Pitot tube is 
reported. 

1. INTRODUCTION 
The stability of laminar shear flows and the transition to turbulent 

motion has received and continues to  attract much attention because of 
its fundamental importance to the study of fluid motions. A great deal 
of theoretical and experimental work has been done on the instability of 
laminar boundary layers and in determining criteria for transition. It is 
known that in general transition can be influenced by the following factors : 
surface roughness ; free stream turbulence ; surface curvature ; pressure 
gradient ; surface temperature ; Reynolds number ; Mach number ; 
acoustic radiation; injection or suction of fluid at the wall. Because of 
the complex manner in which the various. factors affect transition, no 
satisfactory theory for the transition process has been possible so far, and 
the origin of turbulence is still largely an unsolved problem in fluid 
mechanics. 

Recently, recognition of the intermittent character of laminar break- 
.down in a boundary layer has directed attention towards the fundamental 
processes involved. The observations and theoretical work of Emmons 
.(1951) and the experiments of Mitchener (1954), Schubauer & Klebanoff 
(1955), Tani & Hama (1953), Hama et al. (1957) and.others have shown that 
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the transition phenomenon in a boundary layer is characterized by the inter- 
mittent appearance of turbulent spots which move downstream with the fluid. 
The mechanics of spot creation and growth is as yet not completely clear. 
Experimental observations with flow visualization techniques suggest that 
the amplification of Tollmein-Schlichting waves becomes associated at 
some stage with the concentration of vorticity along discrete lines, which 
subsequently distort into vortex loops in the boundary layer. The vortex 
loops themselves go through a process of distortion and extension finally 
resulting in the creation of ‘spots’ of turbulence. Once created these 
spots are swept along with the mean flow, growing laterally as well as 
axially with laminar flow in their trail. The spots originate in a more or 
less random fashion and increasingly overlap as they enlarge during their 
transit downstream, finally covering the entire plate and resulting in fully 
turbulent motion. Passage of the spots over points on the surface results 
in alternations of laminar and turbulent flow. 

These alternations can be quantitatively described by an intermittency 
factor y which represents the fraction of time any point spends in turbulent 
flow. Flow at zero pressure gradient over a flat plate is the only case so far 
studied in any detail. For this case, when transition occurs naturally or 
due to a disturbing agency which causes the spots to appear at some distance 
downstream, the spots grow laterally in a nearly linear manner sweeping 
‘ turbulence wedges ’ on the plate. The angle of these wedges is approxi- 
mately the same as that for transverse contamination found by Charters 
~(1943). During the initial period the spot growth is non-linear, and 
envelopes of spot growth exhibit a characteristic curved shape. 

The existence of turbulent spots in boundary layer flow has been 
confirmed experimentally by Mitchener (1954), Schubauer & Klebanoff 
(1955) and in this laboratory, and it appears to be quite certain that their 
$occurrence plays a fundamental role in the mechanics of boundary layer 
transition and probably also in the breakdown of laminar motion in general. 
In this paper the transition region of a boundary layer on a flat plate is 
examined from a viewpoint which keeps the intermittency of flow as the 
central feature of the process. It is then sought to utilize the available 
experimental and analytical information to explain details of the flow in 
the boundary layer during transition. The main sources of experimental 
information on the mechanics of transition utilized for analysis here are the 
.experiments by Schubauer & Klebanoff (1955) at the Bureau of Standards, 
Washington, D.C., and those conducted at the Indian Institute of Science, 
Bangalore. Both sets were carried out in low-turbulence wind tunnels 
under carefully controlled environmental conditions. 

In the literature it is indeed rare to find transition measurements which 
provide sufficiently complete information. The most serious omission in 
the older studies is usually the intermittency factor whose significance was 
probably not recognized earlier. It is hoped that such measurements will 
.become more common in the future, and will provide more extensive 
.data on transition flows. 
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2. DISTRIBUTION OF INTERMITTENCY DURING TRANSITION 

Experimentally, distributions of the intermittency factor during a 
transition zone can be measured by placing a hot-wire close to the surface 
and recording the amplified output on an oscillograph. Typical records 
obtained in this manner are shown in figure 1 (plate 1) .  The passage of each 
spot over the hot-wire is characterized on the oscillographs by random 
high-frequency fluctuations in contrast to the relatively regular, smooth 
laminar regions. The factor y is easily calculated from such records by 
counting the intervals of time for which the traces show turbulent flow. 

For a quantitative description of the transition process, Emmons (1951) 
has formulated a theory based on probability considerations. This theory 
assumes the existence of a turbulence spot production function g(x, y, t ) ,  
and Emmons shows how this can be related to the probability of the flow 
being turbulent at some point, i.e. to the intermittency factor y. It  has 
been shown by Narasimha (1957) how the original assumptions about the 
production of turbulence sources have to be modified in the light of new 
observations. The main feature of the modification stems from observations 
which suggest that laminar breakdowns in a two-dimensional flat plate 
boundary layer are very nearly point-like, and that the spots originate in 
only a restricted region. On physical grounds which have some support 
from stability theory, one may argue that the amplified laminar oscillations 
can be expected to lead to production of the turbulent spots at a fairly 
definite distance from the leading edge of the plate. Since the actual 
occurrence of spots is random, one can reason that there must be a region 
on the plate downstream of the point of instability where the origin of the 
spots is most probable. At points further downstream, the tendency for 
breakdown rapidly decreases on account of the state of flow behind a spot 
as well as the fact that most of the breakdowns have already occurred. 
Thus the source-rate density function describing spot production should 
have a maximum at some location. I t  turns out that the experimentally 
observed beginning of transition marks this location. 

If one assumes a Gaussian error curve with its maximum at x, to describe 
the turbulence source-rate function, then Emmons’ theory can be used to 
calculate the resulting y distributions. Here x, is the location where transition 
begins. It is interesting to note that the Gaussian curve which gives the 
best agreement with experimental data has a standard deviation approaching 
zero. This implies the form of the source-rate function to be very nearly 
the Dirac delta function. Figures 2 (a )  and 2 ( b )  show representative cases of 
transition illustrating calculations based on the above arguments. An 
interesting and important feature of this hypothesis of localized laminar 
breakdown is the explanation it suggests for the observed statistical similarity 
in the transition distributions. Application of this hypothesis together with 
Emmons’ theory gives 

y = 1 -e-AC‘. (1h 

Here 5 = (x - %)/A, a normalized stream-wise coordinate in the transition 
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zone, A being a measure of the extent of the transition region characterized 
by 

= i X } y  = 0.75 - = 0.26, 

and A is a constant equal to 0.412. 
Equation (1) shows that whatever the cause of. transition, all transition 

regions define a single universal intermittency distribution. Figure 3 
shows the available data on intermittency during transition, and demonstrates 
the agreement between equation (1) and experiment. Further experimental 

I I 
MEASUREMENTS 
R,= 3x10: U = 5 4  

' A T  -j 
F T ~ S E C .  

( b )  
Figure 2. Calculated y-distributions for normally distributed source-rate density. 

evidence supporting the view that the origin of most of the turbulent spots 
is very close to the beginning of transition is given by observations of 
boundary layer thickness during transition. Figure 4 shows two repre- 
sentative cases. They reveal that the virtual origin of the resulting turbulent 
boundary layer is very nearly at xt. The effect of pressure gradients on the 
y(() distributions has not yet been investigated in detail, but preliminary 
measurements indicate that the distribution, is modified mainly in the 
neighbourhood of y = 0. Pressure gradients would thus appear to chiefly 
influence the manner of spot growth in the initial period. 
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Another point of interest is the distribution of y across the boundary 
layer, viz. normal to the plate surface. Note that y(y) is a function of the 
shape of the turbulent spots. The very detailed experiments of Schubauer 
& Klebanoff (1955) and measurements in this laboratory show that the spots 
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Figure 3. Universal distribution of y vs E with transition due to different agents. 
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Figure 4. Boundary layer thickness in transition region (arrows mark limit of 

logarithmic turbulent boundary layer). 

have a nearly constant cross-sectional area close to the surface, but they 
taper towards the outer edge. The measured y(y) distributions during 
transition are similar to those observed by Corrsin & Kistler (1954) in 
fully developed turbulent boundary layers, i.e. y varies from a constant 
maximum value close to the wall to zero towards the edge. While this 
y(y) variation is probably of importance to the detailed structure of the 
turbulent motion associated with the spots for all practical. purposes, the 
y value near the wall is the characteristic property of importance for the 
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transition region. For instance, it is seen in $ 3  that the y ( y )  variation has 
only a secondary influence in determining the mean velocity profiles in 
transition. 

To  sum up, it would appear that the almost point-wise breakdown of 
laminar flow in a boundary layer while occurring randomly in time takes 
place very nearly on a discontinuous line across the flow, whatever the cause 
of breakdown may be. 

3. DETAILS OF TRANSITION FLOW 

(a) Location and extent of the transition zone 
It has been observed in $ 2  that the distribution of intermittency is 

universal on the y(5) plot, This implies that the transition zone has always 
the same extent in terms of the $-coordinate. This information tells us 
nothing about the physical location of the beginning of the transition region. 
So far it is not possible to predict theoretically, even in the simplest case, 
the Reynolds number of transition Rt. Since the mechanics of creation 
of the turbulent spots has yet to be formulated, attempts such as those by 
Liepmann (1945) and Lees (1952) to estimate R, from the development of 
amplified laminar oscillations lead to  difficulties and have not yet been 
too successful. Experimental investigations have established useful 
correlations for the effect of particular types of disturbance agencies on Rt 
(see Dryden (1953), Gazley (1953) and Lin (1955) for recent reviews of 
the available information). There are, however, unexplained discrepancies, 
and in any case these correlations are not general enough to predict R, 
when there is a combination of transition agencies. 

A recent study of the experimental data on boundary layer transition 
available in the literature shows the possible existence of an interesting 
relation between the transition Reynolds number R, and Rn, the Reynolds 
number based on the physical extent of the transition zone. Figure 5 
shows a plot of R, vs R, for the available experimental data. Since in 
many cases there were unspecified differences in experimental conditions, 
the data show considerable scatter; but in spite of this one can discern 
the dependence of R, on R,. The extent of the transition zone appears to 
decrease progressively with decreasing R,, to some limiting value. Actually 
one would expect a family of R, vs Rt curves with each curve depending 
on the specific agency or agencies causing transition and each having perhaps 
different limiting values. Figure 5, however, shows that this dependency 
on the type of disturbance is not too marked, and that for rough estimates 
a single mean curve may be used. The data are represented on the average 
by the equation 

with u = 5.0 and /? = 0.8. 
It should be noted that R, is related to the turbulence source-rate 

production function of Emmons, and the possible existence of an R,vs Rt 
relation is probably of some significance to the transition problem. Using 

Rn = URp (2) 
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equation (2), it is possible to calculate E ,  the average number of turbulence 
sources produced per second, as a function of the transition Reynolds 
number. The results of this calculation are shown as an %-scale in figure 5.  

Figure 5.  CorreIation between Rt and R ,  (Flagged points are 
hot-wire measurements.) 

Subsonic measurements Supersonic measurements 
0 Coles (1954), flat plate, 

M = 1-97-4.54. 
OHiggins & Pappas (lMl),  flat 

plate, M = 2.4. 
Chapman & Kester (1953), 

cone-cylinder, M = 2.9. 
Winter et al. (1954), cone, i M = 2.45, 3-25. 

Hunsaker (1939). 

Wright & Bailey (1939), 

Indian Inst. Sci. 1 
Schubauer & Skramstad I 

(1947), Schubauer 8.z 
Klebanoff (1 95 5). flat plate 

A Dhawan (1953). 

+ x Burgers (1925). 

flat plate with pressure gra- 
dient. 

Silverstein & Becker (1939), 
aerofoil . 

(b)  Mean velocity profiles in the boundary layer during transition 
Following the discussions of 9 1 and 3 2, we note that each point on the 

flat plate during transition is covered with a laminar boundary layer except 
during those intervals of time when turbulent spots pass over it. Two 
questions of immediate interest are : (i) what velocity profile is associated 
with a turbulent spot during its motion; and (ii) whether the mean velocity 
profiles during the intermittent transition process exhibit any similarity. 

The clue to these and other related questions is contained in the 
observations which show that the turbulent spots are randomly created 
at a fairly definite x-wise location, and are on the average all similar in shape, 
their propagation cones being very nearly true cones with straight generators. 
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The fully turbulent boundary layer on the plate which results after transition 
exhibits the characteristics of a two-dimensional turbulent layer, because 
it is a random mix-up of the turbulent spots originating from a narrow 
localized region. Within the transition zone one can similarly associate, 
on the average, a two-dimensional boundary layer with each spot, since 
the transition boundary layer is also a random mix-up of the spots but for 
smaller intervals of time. The overall effect, therefore, is approximately 
equivalent to a flow in which, at each point, the boundary layer alternates 
between a two-dimensional laminar and a two-dimensional turbulent layer, 
each at its appropriate Reynolds number, y representing the proportion 
of time spent in turbulent motion. The origin of the laminar layer is at 
the leading edge of the plate, while y departs from its zero value at some 
point further downstream. The thickness of the transition boundary 
layer would be equal to the laminar or the turbulent layer starting from xt, 
whichever is the greater. 

0 .2 .4 .6 .E 1.0 0 .2 .4 .6 4 10 
0 .2 ‘4 .6 4 1.0 0 .2 .4 .6 .8 f.0 -u. ’ ’ ’ ’ ’ ’ u 0 2 .4 4 .8 1.0 

I I I I 
5.75 6.25 6.75 7.5 8.0 

DISTANCE FROM LEADING EDGE -FEET 

Figure 6. Boundary layer velocity profiles in transition. 

Analysis of carefully obtained experimental data confirms the above 
observations. Figure 4 shows two representative cases of transition flow, 
and it is seen that the observed thickness of the transition boundary layer 
closely checks estimates based on the above reasoning. Figure 6 shows 
a case of transition analysed in detail. The calculated laminar and turbulent 
profiles between which the flow alternates are shown for each station on 
the plate,where a mean profile was measured with a total-head tube. Also 
shown on the figure are the calculated mean Pitot profiles obtained by 
mixing the laminar and turbulent flows. 

The agreement between the measurements and the calculations supports 
the basis of the arguments outlined above. The calculated turbulent 
boundary layer profiles are based on a combination of the well-known 
‘law of the wall’ and the ‘velocity defect law’ as discussed by Clauser 
(1956). The constants entering into these laws were determined in each 
case from the measured fully developed turbulent profiles. Figures 4 and 6 

F.M. 2 E  
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show that the logarithmic turbulent profile is attained in the turbulent spots 
quite early in the transition process. The behaviour of turbulent boundary 
layers at low Reynolds numbers being not very well understood, the deviation 
of the calculated profiles from the experimental data at low y values is not 
surprising. The calculations can give only an approximate indication of 
the state of flow during the early history of a spot. 

The Pitot profiles up(y)  during transition were calculated from the 
equation 

y being measured independently by hot-wire techniques and u,, uT being 
the theoretical laminar and turbulent profiles respectively. Equation (3), 
incidentally, indicates that in regions of intermittent flow care must be 
exercised in interpreting the readings of averaging instruments such as 
Pitot tubes and hot-wire anemometers. The reading of a Pitot is pro- 
portional to pressure (z2) ; hence the average velocity during transition 
flow indicated by a Pitot tube (i.e. equation (3)) is different from the true 
time mean a, which is given by 

Equations (3) and (4) are compared in figure 7 ,  which shows a representative 
transition velocity profile measured carefully by means of a small flat 
total-head tube. A complete y(y) distribution measured across the boundary 
layer at the same location is also included. 

.P(Y) = ((1 - 714 t- Y.;}1’2, (3) 

c = (1 - y ) U z  + yu,. (4) 

Figure 7. Transition profile. 

Significant facts which emerge from the data and calculations of 

(a) The calculated Pitot profiles are in remarkable agreement with the 
reading of the total-head tube. This agreement proves the soundness 
of the physical picture on which the analysis is based. 

(b)  Although y varies across the boundary layer, for purposes of profile 
calculation, the value measured close to the wall gives sufficiently 
accurate results for the whole profile. Thus the spot shape which is 
associated with the y(y) variation appears to have only a secondary 
influence on the transition flow, y(x) being the significant property. 

figures 6 and 7 are as follows: 
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(c)  Transition velocity profiles measured with a total-head tube must be 
corrected to give the mean profile. The errors are specially significant 
close to the wall, and skin friction determinations from uncmrected 
measured profiles are likely to have large errors. 

Before taking up the question of similarity of the mean velocity profiles 
during transition, it is useful first to consider the boundary layer parameters 
6", 8, H which are known to play an important part in the quantitative 
description of boundary layers. During transition the displacement and 
momentum thickness can be defined as 

and 

where 6, is the thickness of the transition boundary layer, and Q(y)  is given 
by (4). 

Using (4) in (5) and (6), and recognizing that 6, = 6, if 6, > a,, or 
St = 6, if 6, > a,, we obtain after some simplification 

6; = (1 - y ) G  + y(63 ,  (5 a) 
and 

4 = ( 1  - ~ ) ( ( l  - Y ) ~ , - Y ~ Z >  + Y W ' T -  (1 -Y)G> + M I  -Y)WA (6a) 
where S z ,  8; are displacement thicknesses and 8,, 8, are momentum 
thicknesses of the laminar and turbulent profiles respectively, and 

U is the uniform velocity outside the boundary layer. 

Figure 8 shows two cases of transition flow for which equations ' ( 5  a) 
and (6 a) have been compared with experimental data obtained from 
corrected profiles and y measurements. One set of corrected profiles 
measured for Rt = 4.3 x 105 is shown in figure 9, while the other set for 
Rt = 2.3 x lo6 is the same as that shown in figure 6. The analysis is seen 
to give good agreement with the measured distributions of 6: and 0,. The 
profile-shape parameter H is given by 

and this can be put in the form 
Ht = 62"/4, (7) 

8T 
( 1  --Y)HL+YHT e 

F 9 
L Ht = 

( 1 - Y Y  [I- & H,]+y2[1 -  y 1 - Y  H,] 2 + W l - Y )  

where HA and HT are the form parameters for the laminar and turbulent 
boundary layers respectively. 

The variation of Ht is shown in figure 8 for the two cases studied. It is 
interesting to note that when plotted against the &coordinate, the variation 
of Ht in the transition region shows a near universality. Actually, as the 

2 E 2  
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figure shows, one can notice a small Reynolds number effect on Ht mainly 
towards the latter half of transition. This is to be expected since the 
turbulent boundary layer associated with the spots depends on A,, the 
Reynolds number of transition, and H for the turbulent layer is known to 
vary with Reynolds number. Figure 8 shows that the effect on Ht is small 

.. 

Figure 8. Boundary layer parameters during transition. 

Figure 9. Corrected mean transition profiles (Indian Inst. Sci.). 

for a wide range of Rt values. For approximate calculations, a simple 
-expression can be derived for the distribution of the transition-shape 
parameter. This is of the form 

(7 b) Ht = Hp + (HL - HT)t+''. 

'This expression implies a linear relation between Ht and y, and is plotted 
i n  figure 8 for comparison. 
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Having seen that a knowledge of Rf and y ( x )  for any case of transition 
leads to a calculation of the mean velocity profiles as well as the parameters 
a;, 0, and H,, we now attempt to represent the profiles as far as possible 
in a unique manner. It is known from boundary layer theory that for steady 
flow past a flat plate with zero pressure gradient, both the laminar as well 
as the fully developed turbulent boundary layers exhibit similarity. This 
fact is usually expressed by the profiles being independent of Reynolds 
number effects when expressed in the form 

and (9) 

The function f( ) is defined by the Blasius solution, while g( ) can be 
tabulated in terms of the nearly universal turbulent boundary layer 
logarithmic laws, of which the 4th power law is an approximate repre- 
sentation. Since the mean transition profiles are a resultant of the 
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Figure 10. Similarity of transition profiles. 

laminar and turbulent profiles combined in proportion to y, it is logical 
to extend the similarity of equations (8) and (9) to transition flow by 
including the effect of y. We thus postulate that 

(;)# = h($, Y). 

In  principle the function h( ) is defined by a solution of the differential 
equations governing the mean transition flow. Unfortunately, these have 
yet to be formulated. We resort to an examination of experimental data 
for information on the form of h( ). 

In  figure 10 two sets of mean transition profiles measured for widely 
differing R, have been plotted in the form (a/Q os 6 for fixed values of 
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r/d. Figure 10 shows 
that the transition profiles do indeed define, at least approximately, a 
function h(y/O, y )  which for all practical purposes is independent of Reynolds 
number. Figure 11 is a cross-plot from figure 10, and shows the universal 
laminar and turbulent transition profiles as well as the one-parameter 
family of profiles. Persh (1955) has noted, from an examination of experi- 
mental data, that transition profiles exhibit approximate parametric similarity 
when plotted as u/U vs H for fixed y/d. We recall from (7 b) that H&) 
is nearly independent of Reynolds number effects. Since the functions 
y(g) and h(y/O,, y )  are universal, the reasons for the correlation observed 
by Persh become clear. The representation of transition profile data 
in the form of equation (10) is to be preferred as it shows the dependence 
on intermittency explicitly. 

Since [ is a function of y, a y-scale is also shown, 

Figure 11. Similarity of transition profiles; (Ti/U), = h(y/&, y). 

( c )  Skin friction 
Local skin friction 

If c , ~  and clll are the local skin friction coefficients for laminar and 
turbulent flow respectively, then the mean local skin friction during 
transition is given by 

This equation is plotted in figure 12 for the two cases of transition analysed 
earlier. The transition c,-curves, which fair smoothly into those for laminar 
and turbulent flow, show a mbre rapid increase of wall friction than is usually 
assumed. At the end of transition the local skin friction is seen to be 
considerably higher than the valu’es given by the turbulent skin friction 
laws based on the turbulent boundary layer starting at the leading edge 
of the plate. The usual presentation of skin friction data on a plot of the 
total friction coefficient C, vs R, obscures the fact that the origin of the 
turbulent boundary layer is approximately coincident with the beginning 
of transition and the onset of intermittency. The usual skin friction curve 
for turbulent flow must be translated along R,  so that its virtual origin 
coincides with the foot of transition. 

Crt = (1 - Y)Cf& + YCf,. (11) 
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Independent evidence supporting this is provided by the transition 
local skin friction data of Coles (1954), which is shown in figure 13. Coles' 
experiments measured eft directly, and were conducted at supersonic 
speeds so that the final turbulent boundary layer curves must include 
compressibility corrections. In  figure 13 the Frankl-Voishel (1943) 
theoretical curve for cfr has been used as this is known to give reasonably 
accurate predictions of supersonic skin friction. The characteristic shape 
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Figure 12. Local skin friction in transition region. 

Figure 13. Local skin friction during transition in supersonic flow (from Coles 1954). 

of the local cf curves rising above the turbulent friction curves is seen again. 
These data also suggest that the mechanism of transition is not altered at 
supersonic speeds. The fact that after the breakdown of laminar flow 
the resulting turbulent boundary layer has an effective origin close to the 
beginning of transition resulting in high cf  values is probably also the 
reawn why measurements of transition recovery factors show values higher 
than expected (Shoulberg, Hill & Rivas 1954). 
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Another interesting feature of the transition local skin friction curves 
is brought out by figure 14, which shows that the difference {cfi - c& = o> 

is independent of Reynolds effects during transition. Here c& is the 
value of cfL at x,. The points shown on figure 14 were calculated from the 
corrected experimental profiles used elsewhere in this paper. They 
approximately define a single curve with f as the variable. While it is 
difficult to give an a priori theoretical justification for this observed 
correlation, a reasonable explanation is as follows. 

Figure 14. Similarity in variation of skin friction during transition. 

We have that in (11)  cfJ and cfT may be represented as 

cfL = K , / R : ~ ~ ,  (12) 

cfT = K21Ri15, (13) 
where K,, K2 are constants. Using the definition of [ and equations (l), 
(12) and (13), we cqn write (11)  as 

Cfd = F@,, R,, s>. (14) 

Cf, = F{R,, f } .  ( 1 4 4  

(14b)l 

Now if R, and RA are related as suggested by the experimental data of 
figure 5, equation (14) becomes 

The correlation observed in figurc 14 shows this function to have the 
form 

with @(RJ = cftjy=o, the value of laminar skin friction at the beginning 
of transition. 

F{R,, 0 = @(R,) + V5) 

We thus get 

Cft--Cftl, = o  = wo> (15 

function of the &coordinate alone. We note that figure 14 implies, once 
again, that the main Reynolds number effect on transition is through the 
location of the region of laminar breakdowns. Subsequent events are 
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An approximate controlled by the intermittency and its distribution. 
expression for the function Y is 

This equation is plotted in figure 14. 

Total skin friction 
The behaviour of the local skin friction coefficient during transition 

discussed above can be used for engineering purposes to calculate the total 
skin friction of a plate on which transition occurs at some' location. 
Integration of (11) for a plate of length 1 with transition starting at x = xt 
and ending at x = xi gives 

Y(t) = 0-003( 1 - e-&€*).  (15 4 

for 1 < xi, } (16) 

Here the upper limit of the second integral for 1 > XI has been taken to 
be 8 = 4.0 in accordance with figure 3. 

These expressions may be put in a more convenient form by utilizing 
the approximate relation (15a) and the Rt us Rn relation of (2). The 
total skin friction coefficient CF is then given by 

a +  bR - C erf(dR'/Rf) 
R, 

, for 1 <xi, CF = 

and 

for I > xi ,  J 
where 

a = Rt{CFLly = o}, b = 0.003 + CFLlv - 0 ,  

C = 0*00376aR,B = 0*0188R~', d = 0*707/a = 0.141, 

= c- a + 4aRf{CF,IxI - b} = 5{0-00376 + 4(C,,lxl- b)}R?' - a, 

u = 5.0, = 0.8, R' = R, - Rt, 

Equation (16a) is plotted for a range of Rt values in figure 15. For one 
case a comparison is shown with Emmons' calculations, the usual 
Prandtl-Schlichting estimation, and Geber's experimental data (see 
Schlichting 1955). The present analysis shows a sharper rise of CF due to. 
transition than is indicated by Emmons and shows a rounding-off of the 
transition curve at the beginning of transition unlike the Prandtl-Schlichting 
semi-empirical curve. 
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Figure 15. Mean friction coefficient of a flat plate with transition at Rt. 

4. ESTIMATION OF y BY A PITOT TUBE 
It has been shown in Q 3 that fairly good agreement is obtained between 

the velocity profiles measured by a Pitot tube and those calculated from 
the formula (obtained immediately from (3)) 

using measured values for y and the theoretically known values for (u/U),  
and (u/ U)T. This immediately suggests the possibility of experimentally 
obtaining y without having to use the hot wire and associated equipment. 
From the measured velocity profile, or indeed from a single measurement 
of ( U / U ) ~  in the transition region at a certain height from the surface, 
y can be obtained as 

where (u/U),  is the reading of the Pitot tube. 
A suitable procedure for determining the y-distribution by this method 

is to traverse a Pitot tube along the transition region at a fixed height above 
the surface. T o  get the best results, the height should be such that the 
difference in the velocity, at that height, between the laminar and turbulent 
profiles is as large as possible throughout the transition region. From an 
examination of figures 9 and 10, it seems that this height should be of the 
order of 8. A surface tube is not likely to give satisfactory results, as its 
readings cannot always be quantitatively interpreted. 
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Figure 16 compares intermittency measurements obtained for the 
same flow by the hot wire and Pitot methods. For the latter, the velocities 
(u /U) ,  were read off, for a height from the surface of 0*024in., from 
measured Pitot velocity profiles. Figure 17 shows the results obtained 
from a Pitot traverse at a height of 0.035 in., together with the calculated 
laminar and turbulent curves. The origin for the turbulent boundary 
layer was chosen as the point where the measured curve departs from the 

10 

Y 

0 5  

0 1 4 
0 

Figure 16. Estimation of y using a Pitot tube. 

k - T R A N S l  TlON 4 

t 
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Figure 17. Pitot traverse along plate tb estimate y. 

laminar. Incidentally, a simple method of obtaining the ' turbulent ' curve 
in figure 17 is to plot the measured fully-turbulent points on logarithmic 
paper against (x- xt) and draw a straight line through them extending 
upstream. This line then gives the (u/U),  values for the y determination 
in the transition region. This procedure gives good results and would be 
completely justified if the turbulent profiles followed a power law with a 
constant index throughout. The values of the intermittency obtained 
from this experiment are also plotted in figure 16. 
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CONCLUDING REMARKS 
In spite of the origin of turbulence remaining obscure, Emmons’ picture 

of transition in a laminar boundary layer supplemented by experimental 
information allows a detailed physical model of the process to be set up. 
From this a relatively adequate calculation of the macroscopic effects can 
be carried out. 

One of us (R. N.) wishes to acknowledge his indebtedness to the National 
Institute of Sciences of India for a Fellowship held during the course of 
this research. 
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